
Page 1 of 13

Developing a Product Line Approach for Flight Software
Mike Stark, Dave McComas

NASA/Goddard Space Flight Center

Guilherme H. Travassos

COPPE/Federal University of Rio de Janeiro

Maurizio Morisio

Politecnico di Torino

Abstract
This paper describes research into software product lines performed jointly at Goddard
Space Flight Center by the Flight Software Branch and the Software Engineering
Laboratory. It describes the motivation for this project, the approach taken to the
research, and some observations from our initial prototyping.

Introduction
This paper discusses the development and evaluation of a product line development
approach within the Flight Software Branch (FSB) at Goddard Space Flight Center
(GSFC). The work described here is based on both previous experiences with software
reuse at GSFC and product line methodologies documented in the software engineering
literature. The problem domain used for this evaluation is Guidance, Navigation and
Control (GNC). The reasons for choosing this problem are discussed in the next section.

The methodologies investigated by this project include Synthesis as documented by the
Software Productivity Consortium [1], Family-Oriented Abstraction, Specification and
Translation (FAST) [2], Product Line Software Engineering (PuLSE) from the
Fraunhofer Center [3], and Feature-Oriented Domain Analysis (FODA) as documented
by the Software Engineering Institute [4]. Previous work at GSFC includes
investigations within the FSB [5], and the Generalized Support Software (GSS) project
[6], which developed reusable GNC software for ground-based applications. GSS largely
predated the popularity of “product lines” as a software engineering approach, but shared
many of the characteristics of current product line work. Our processes are primarily
based on Synthesis and FAST.

One characteristic that can be discerned from reading the product line literature is that
there is no common definition for software product line. We will adopt the following
definition from Weiss’s work [2]: “We call a family of products designed to take
advantage of the common aspects and predicted variabilities a product line.”

A second characteristic of product line processes is that at the highest level they look
extremely similar. The typical product line process has separate activities associated with
domain engineering, which produces a set of reusable assets, and application
engineering, which configures these assets into application software products. Finally,
there is a mapping called a decision model that enables an application engineer to
examine the reusable assets and readily specify how they are to be used for a specific

Page 2 of 13

application system. Figure 1 represents the relationship between domain engineering
processes and products, application engineering processes and products, and the decision
model.

Figure 1. Product Line Development

For the FSB, the following benefits were identified as being attainable using such
approach:

• To apply technology consistently across all projects;

• To control product growth;

• To reduce development time without increasing risk, and;

• To institutionalize knowledge that is the legacy of the four predecessor
organizations.

The next three sections of this paper describe the FSB’s reasons for examining a product
line approach, the details of how the project is approaching the problem, and observations
about what has happened so far, respectively. The final section summarizes our
conclusions and suggests future directions.

Flight Software Branch Background
The Flight Software Branch was formed in December 1997 as part of a major
reorganization at GSFC. This branch combined personnel from four different
predecessor organizations, each of which had its own distinct culture. The history of
flight software projects at GSFC is that commitments to missions are met, but they are
often met at a high cost in dollars and overtime. One could characterize these projects as
operating successfully at CMM level 1, with a high dependence on skilled “heroes” who

Domain
Engineering

Process
•Analysis
•Design
•Code
•Test

Reusable
Products

Application
Engineering

Process
•Analysis
•Design
•Code
•Test

Mission
Software

Decision
Model

Page 3 of 13

make things work. These factors, coupled with shrinking budgets and schedules,
motivate the Flight Software Branch to consider using a product line approach.

To evaluate product line approaches, the FSB decided to use the guidance, navigation and
control problem domain. There are several reasons for choosing this domain. First, GNC
is a very mature, stable problem domain. It is rooted in the physics of Newtonian
mechanics and the mathematics of parameter estimation and control theory. Typically
the most variable part of the domain is the modeling of spacecraft sensors and actuators,
but even this area works with a finite set of hardware models.

Second, GNC is needed for every satellite mission, and in most cases the FSB has
ultimate responsibility for this software. This is distinct from current ground systems,
where the software is often acquired rather than developed under NASA control. The
FSB has a set of about a dozen recent missions that can be used as input to domain
analysis.

These missions include both Earth and space science missions, and have several high-
level characteristics that are driven by the scientific requirements. Typical characteristics
include the distance of the spacecraft’s orbit from the earth and required pointing
accuracy. These characteristics drive both the overall design of the mission and the
specifics of the GNC flight software, and a product line must be flexible enough to
support a wide range of mission goals.

In addition to the FSB experience with GNC flight software, choosing GNC as a problem
domain allows lessons to be drawn from the GSS project’s experience with GNC ground
software. This project was able to use object-oriented technology to realize the
development cost and schedule goals set by management. These strengths are part of the
motivation for the use of object-oriented approaches described in the next section.
Despite these strengths, GSS is not currently being used by new projects. This is at least
in part due to the focus on optimizing the process from a developer point of view, without
regard to whether the processes and products addressed the needs of stakeholders such as
flight dynamics mathematical analysts. The considerations described above led to the
following project goals:

• Provide a framework for continuous improvement. In the current mode of
development for the FSB, it is very difficult to assign the most skilled personnel
to research technology improvements, as they are required to meet mission
requirements. Even this project had episodes where problems on mission projects
diverted key personnel who were in principle assigned full time to look at
improving FSB development practices. An effective product line would help free
resources for research and development projects, and would provide a baseline for
technologists who are evaluating new technologies for potential benefits.

• Reduce development time without sacrificing quality.

• Increase productivity.

These two goals allow projects to be supported by smaller teams, or would allow
the same size teams to develop more complex software, reusing quality software
artifacts already built to capture domain commonalities.

Page 4 of 13

• Provide rapid prototyping capabilities. The FSB has been interested in
integrating their models with code generated by analysis tools such as MATLAB.
This would enable controls analysts to use the same high fidelity models that are
used in flight software within their early mission studies. This is not the main
goal of the project, but if this is shown to be feasible it would make the product
line useful to a larger community of GNC engineers than just the flight software
developers.

Together, these goals form an ambitious agenda. The purpose of the product line
research is to evaluate whether the FSB can accomplish these goals. The next section of
this paper describes the approach to determining whether these goals can be met.

Product Line Development and Evaluation Approach
To succeed in meeting the project goals, the product line research must show that the
approach being studied is technically feasible, that it is cost effective, and that it serves
the needs of the key stakeholders in a flight software project. The set of stakeholders
under consideration include mission flight dynamics and controls analysts, mission test
and maintenance personnel, and the domain engineers themselves.

The approach we took towards developing and assessing a product line consisted of three
steps. First, we evaluated existing product line methods via review of the literature and
using training opportunities that were available. Second, we performed a high-level
domain assessment to determine the boundaries of the GNC domain for this product line.
These first two steps established a framework for the product line development process
and the boundaries of the problem domain.

After these initial steps, the team implemented a series of prototypes to evaluate both the
products and processes that comprise the product line. At the writing of this paper, the
team was nearing completion of the second prototype application.

While these research activities are presented sequentially, in practice there is much
iteration between them. For example, as more process lessons are learned during
prototyping, the previously evaluated processes can be re-examined and refined in light
of the new knowledge. The next three sections describe each stage of development and
evaluation in more detail.

Method Evaluation
There are different product line approaches described in the technical literature, as is
discussed in the introduction to this paper. To identify that one that best fits our project
needs would imply in the accomplishment of a detailed evaluation process, which we did
not have time and enough people to accomplish. Therefore, since we had training
resources immediately available for Synthesis, we initially attempted to apply Synthesis.
However, we found that the further one went in the Synthesis process, the fewer details
were provided by the documentation. Supplementing Synthesis with ideas from FAST
helped address this lack of detail. A further issue was that Synthesis introduced a
completely new set of terminology, which was difficult to understand in the context of
the current flight software development process.

Page 5 of 13

The solution we applied was to create a project-specific process framework, as shown in
Figure 2 below. This process merges the traditional approach of doing analysis, design,
implementation and test with the concepts of domain and application engineering shown
in Figure 1. This framework identifies the high-level processes and products for both
domain and application engineering. This approach is described further in [8] and [9].

The details of each process step and product will be elaborated as part of the prototyping
process; at this point the domain and application analysis processes have been addressed
more thoroughly than the others. The domain analysis approach uses the Unified
Modeling Language (UML) notation, with extensions added to represent variabilities [8].

Domain
Management

Domain
Plan

Domain
Analysis

Domain
Design

Domain
Implementation

Domain
Verification

Application
Support

Domain Analysis
Structured Requirements Model
Requirements Decision Model

Domain Design
Design Model
Design Decision Model

Domain Modules
Level 1
Level 2
Level 2 Decision Model

TBD Application
Process

Description

Application
Design

Application
Implementation

Application
Verification

Application
Support

Application
Design

Application
Modules

TBD

Application
Users Guide

Project
Management

Project
Plan

Domain
Engineering

Application
Engineering

Process FlowActivity

Product Data Flow

Project
Requirements

Application
Analysis

Application
Requirements

Figure 2. Product Line Process Framework

This process framework can also be compared to the GSS processes. On the domain
engineering side, the analysis, design and test were similar (at this highly abstract level),
but the domain verification was generally done through design and code inspections, and
extensive functional testing of the initial application that used a domain asset. On the
application engineering side, GSS merged the application design and implementation into
a single configuration process that was a highly streamlined way of creating an
application from a standardized mission specification.

The GSS processes were successful in that they allowed applications to be built more
rapidly and at a lower cost, so the high-level similarities are encouraging. At the detailed
level, however, it will be necessary to create reusable assets that are more usable by
analysts and testers than the GSS asset library.

Page 6 of 13

High-level Domain Assessment
The process evaluation discussed above gave a framework for the elaboration of product
line process elements. The high-level domain assessment provides a framework for the
GNC domain itself. The key elements of this assessment were to

• Bound the domain

• Identify the essential subdomains

• Establish priorities for prototyping

All of these were done using information from a set of reference missions that are under
development or maintenance by the FSB. These missions were selected to be
representative of the anticipated future missions.

The notation used to represent the domain boundaries and the essential subdomains
included a context diagram, an informal subdomain dependency diagram, and
documentation of assumptions about commonalities, variabilities and exclusions. Figures
3 and 4 show the context diagram and the dependency diagram, respectively.

Flight Dynamics
and

Controls Analysts
Payload

Mission Planning
&

Operations

FSW Test and
Maintenance

GNC Flight
Hardware

Electrical Power
Subsystem

Communications
Subsystem

Thermal
Subsystem

Guidance Navigation
and Control

Flight Software

Figure 3. Context diagram for Guidance, Navigation and Control

In Figure 3, the boxes represent external entities (both people and other spacecraft
subsystems), with the arrows representing data flows between the GNC flight software
and these external entities. In Figure 4 the boxes represent subdomains within the GNC
domain, and the arrows represent dependencies. The dotted lines are added to indicate
layering within this model.

Page 7 of 13

Figure 4. Subdomain dependencies

The commonalities, variabilities and assumptions are documented using the text format
template described for Synthesis and FAST. A simple example of the format is shown
below.

Commonality/Variability/Exclusion notation

Solar Ephemeris Model Commonality Assumptions

1. Compute solar position in J2000 using the current spacecraft time.

Justification: Position is the minimal required state information.

Solar Ephemeris Model Variability Assumptions

1. Compute solar velocity.

Justification: Compute only if mission requires it.

Solar Ephemeris Model Exclusion Assumptions

1. Solar velocity with respect to the stars is not required since star catalogs take
this into account.

Momentum
Determination

Solar System

GNC
Hardware

Numeric
Utilities

Engineering
Data

Coordinate
Systems

Math
Libraries

Intrinsic
Data

Vehicle Stellar System

Attitude
Determination

Orbit
Determination

Fault Detection

Momentum
Control

Attitude
Control

Orbit
Control

Mission

Business

Utilities

Reference

Modes
Constraint

Management

Time

Fault Correction

Page 8 of 13

The way these assumptions are documented is very similar to the text notation already
used for mission requirements. Thus the domain engineering team believes that this
notation will be relatively easy for FSB developers to adopt.

Prototyping
Once the process framework was defined and the initial domain assessment completed,
the team defined a series of prototype applications. Each prototype is defined to analyze
the following issues (as shown in Table 1 below):

• Domain functionality

• Flight software architecture

• Product line processes

Functionality Architecture Processes

1. Orbit Propagation –
basic models of spacecraft
and celestial body motion

Windows NT executable,
open loop system.

Exploration of UML for
domain analysis

2. Safe Hold control –
adds sensor/actuator
hardware and simple
control algorithm.

Windows NT executable,
closed loop system
(includes simulated
response to control
commands),

Evaluate approach to
integrating hardware-
dependent code

Identify design patterns
created during prototype
development.

3. Attitude determination

Add sun sensor,
magnetometers, sun and
magnetic field models,
attitude determination
algorithms

Windows NT executable,
incorporate simulated
flight data system (FDS)
environment.

Document and apply
process for developer
perspective

4. Inertial Hold control

Add inertial hold control
algorithm

Add multiprocessing, run
on flight hardware testbed
if available

Document and apply
process for analyst and
tester perspectives

Table 1. Prototype planning.

The prototyping so far has evaluated several potential processes and product notations
beyond what was specified for Synthesis. These products include UML class diagrams,
mission/client matrices, and mission/capability matrices.

Figure 5 is the class diagram for the Celestial Body subdomain that was used for the orbit
propagation prototype. The UML notation is extended with a variability stereotype,
indicated by the <<V>> annotation. The <<V>> indicates where an application engineer

Page 9 of 13

would choose to include or not include a class or method, providing decision model
information using standard UML notation. The team built two applications, one for a low
Earth orbit, and one orbiting a libration point at a greater distance from the Earth.

IGRF Magnetic Field

IGRF Coefficients

wrench()

magneticfield()

<<V>>

Dipole Magnetic Field

Dipole Coefficients

wrench()
magneticfield()

<<V>>

Constant Magnetic Field

Constant Coefficients

wrench()
magneticfield()

<<V>>

Harris-Priester Atmosphere

density()

<<V>>

Spherical Harmonic Gravity

wrench()

<<V>>
Point Mass Gravity

wrench()

Polynomial Model

parameters

Set_Parameters()
Validate_Parameters()

<<V>>

Constant Atmosphere Density

density()

<<V>>

Jacchia-Roberts Atmosphere Density

density()

<<V>>

Celestial Body Ephemeris

pose()

<<V>> rate()

Celestial Body Albedo

luminance()

<<V>>

Celestial Body Gravity

parameters

wrench()

<<V>>

Celestial Body Magnetic Field

magneticfield()

<<V>> wrench()

<<V>>

Celestial Body Atmosphere

parameters

density()

wrench()

<<V>>

Celestial Body

wrench()

pose()

11

0..10..1

0 . . *0 . . *

0..*0..*

0..*0..*

Integrat ion Model

Integrate()
set_initial_state()

<<V>>

pose means position
and orientation. wrench
is force and torque.
Some bodies wi l l only
need translation, some
wi l l only need rotat ion.
We don't put in all these
<<v>>s, to keep things
cleaner.

wrench

Celestial Body Domain Analysis Class Diagram

Moon Ephemeris Low

Sun Ephemeris Low Sun Ephemeris High

Moon Ephemeris High

Figure 5. Celestial Body Subdomain Class Diagram

The differences in mission orbit mapped to different selections being made when
applying the decision model. This was a simple and successful first test; further
prototypes will evaluate whether this concept works with larger, more complex
applications.

As the <<V>> stereotypes are used in the context of an object-oriented notation, the use
of stereotypes interacts with concepts such as inheritance and aggregation. Rules for the
interaction of variabilities and object-oriented concepts are described in [8]. These
stereotypes and rules cover inclusion decisions, but they don’t cover more complex
constraints such as “only use objects of class Moon Ephemeris Low if it is contained by a
Celestial Body object representing the Moon.” We need to investigate whether UML
notation is the best approach to representing such rules.

Page 10 of 13

Figure 6 shows a mission/client matrix. Any model in the domain (in this example, a
coarse sun sensor) may have such a matrix. The rows represent the legacy missions
being analyzed for the product line, and the columns represent other models within the
domain using the given capability. Each cell shows how a particular client model used
the model within a particular mission's flight software. The mission/capability matrix is
similar in concept, with each column representing a capability instead of a client model,
and with the cells containing description of how a particular mission implements the
capability.

Figure 6. Mission/Client Matrix

These matrix representations were first tried on the second prototype application; for the
first prototype we used diagramming techniques that worked for the orbit propagator, as
there are few if any variations in how these models are implemented. However, the
sensor models needed for the second prototype had more subtle differences in
implementation details, which were difficult to capture in a diagrammatic notation. We
found it more useful to use a simple table and supplement it with text descriptions as
needed, rather than trying to use a notation that over-constrains the problem.

A second factor illustrated by these matrices is the need to focus on who will be reading
various products. These tables are intended for domain engineers to compare and
contrast past missions. The tabular notation strongly supports summarization of
information from many missions, but relies on domain engineers having the knowledge
needed to fill in the details from these summaries. An application engineer would not use
these matrices for mission analysis and design; a separate notation specific to the task of
applying the decision model will be used.

Estimation

Ac_USun_BF
• TRIAD
• Kalman Filter
Residuals

Ac_USun_BF
• TRIAD
• Kalman Filter
Residuals

Control

Ac_USun_BF
• Digital Sun Control
• Momentum Control

Ac_USun_BF
• Digital Sun Control
(Compute precession
moment)
• Momentum Control

Mode/Constraint
Management,

Telemetry

SunPresent(any
eye lit)
• Eclipse logic

SunPresent(any
eye lit)
• Eclipse logic

SWAS

WIRE

Capability using CSS model

Mission

Page 11 of 13

Observations
As a result of the prototyping, we can make both general observations about product line
development and some specific conclusions about the first two prototypes. The first
prototype has been completed and evaluated, and the second prototype is nearing
completion. The second prototype also provides some lessons, but it still is awaiting a
full evaluation. We can observe the following so far:

• As described in the last section, we were able to see a variability in a mission
profile reflected in the selection of models from the Celestial Body subdomain.

• We did not make a clear distinction between domain and application engineering
processes and products. However, the reusable components and the application
specific components can be identified after the fact by examining the prototype 1
source code. The next step is to fully document the domain and application
engineering product templates and processes; and then to apply them to
subsequent prototypes.

• We observed variations in design approach between the first and second prototype
application. One key difference was that the first prototype used direct message
passing between objects, where the second prototype used “switchboard code” to
read sensor data and then call the sensor data processing class, rather than having
the data processing class call the read directly. This difference will add
complexity to the application engineering process; so it is worth analyzing further
to determine whether the difference is inherent in the problem domain, or simply
an ad hoc variation.

• Despite our recognition that we need to involve all the different GNC
stakeholders in the prototyping effort, we have focused so far on the developer
perspective. This points to a need to revisit our prototype plan and explicitly
address the issues associated with key stakeholders. The initial set to consider
includes controls analysts who define GNC requirements for missions, and flight
software testers.

This leads into some more general observations. One is that the functionality,
architecture, and process issues are all important to product line development, and that
they are all coupled. An example of this is the coupling between the architecture and the
application engineering process. To make application engineering efficient, one should
create reusable products that are easy to understand, and define a decision model that is
as easy as possible to automate. Both of these goals are easier to accomplish if the
architecture has a standard format for implementing modules (classes in the case of
object-oriented development). This may not be fully attainable in the context of a given
problem such as flight GNC software, but it should be a design goal. In short, most
product line approaches allow a lot of flexibility in defining process and product details.
The choices made for these processes and products should be driven by the
organization’s goals and then adhered to.

Another general observation is that one needs to repeat the domain assessment for each
new product line release. This was one major difference between Synthesis, which
tended to put planning activities outside the domain engineering lifecycle, and FAST or

Page 12 of 13

PuLSE, which make the business analysis and planning an integral part of the analysis
activities for a release. Product line engineering is a long-term investment that needs to
be re-evaluated frequently to determine whether you are still creating the products with
the highest payoff. In the NASA context, these assessments may change as the set of
anticipated missions changes via winning proposals or having a mission cancelled. This
is not a novel idea, but it is an important one that has not always been carried out.

Conclusions
The factors that we believe will make a product line effort succeed are as follows:

• Develop a series of increasingly realistic prototypes with the goal of ultimately
demonstrating a small but realistic application in the target environment. In the
case of the FSB this will require running on test versions of flight hardware.

• Keep the architecture and the decision model as simple and consistent as the
application domain will allow. This will make the application engineering
process easier to carry out and ultimately to automate.

• Consider the perspectives of and the tasks carried out by all users of the product
line on both the domain engineering and application engineering side of the
process.

The next step is to analyze the second prototype and to document product line processes
and products based on the results of the first two prototypes. This work will include
expanding the study to determine the needs of controls analysts and flight software testers
and incorporating processes and products that are designed based on this analysis. This
fully documented product line approach can then be applied to more realistic prototypes
to determine whether it is feasible and beneficial to the FSB and GSFC Projects.

References
1. Software Productivity Consortium, Reuse-Driven Software Processes Guidebook,

SPC-92019-CMC version 02.00.03 November 1993.

2. Weiss, David M. and Chi Tau Robert Lai Software Product-Line Engineering: A
Family-Based Software Development Approach. Addison-Wesley, 1999.

3. Bayer, J., O. Flege, P. Knauber, et al., “PuLSE: A methodology to develop
software product lines”, Symposium on Software Reusability (SSR99), May
1999.

4. Kang, K., et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study
(CMU/SEI-90-TR-21, ADA 235785). Pittsburgh, PA: SEI CMU, 1990.

5. McComas, D., J. O'Donnell, Jr., and S. Andrews, "Using Automatic Code
Generation In the Attitude Control Flight Software Engineering Process",
Proceedings of the 23rd Annual Software Engineering Workshop, December 1998.

6. Condon, S., R. Hendrick, M. E. Stark, W. Steger, "The Generalized Support
Software (GSS) Domain Engineering Process: An Object-Oriented
Implementation and Reuse Success at Goddard Space Flight Center", Addendum
to the Proceedings of the Conference on Object-Oriented Programming Systems,

Page 13 of 13

Languages, and Applications (OOPSLA 96), San Jose,California, U.S.A., October
1996

7. Rumbaugh, James, Ivar Jacobson, Grady Booch, The Unified Modeling Language
Reference Manual, Addison-Wesley, 1998.

8. Morisio, M., Travassos, G.H., Stark, M. “Extending UML to Support Domain
Analysis”. IEEE International Conference on Automated Software Engineering –
ASE’00. Grenoble, France, 2000.

9. McComas, D.; Leake, S.; Stark, M.; Morisio, M.; Travassos, G.H., White, M.
“Addressing Variability in a Guidance, Navigation, and Control Flight Software
Product Line”. Proceedings of the First Software Product Line Conference. The
First Product Line Conference – SPLC1. Denver, Colorado, 2000

